Математики решили одну из самых известных древних задач – о квадратуре круга

Математики решили одну из самых известных древних задач – о квадратуре круга

Укринформ
Математики Андраш Мате и Олег Пихурко из Уорикского университета и Джонатан Ноэль из Университета Виктории опубликовали решение одной из известнейших математических задач о квадратуре круга, которую, как считалось, было невозможно решить с помощью циркуля и линейки.

Как сообщает Укринформ, об этом сообщает Quanta Magazine.

Эта задача состоит в построении с помощью циркуля и линейки квадрата, равновеликого по площади к заданной окружности.

Отмечается, что авторы продемонстрировали, что круг можно превратить в квадрат, разрезав его на части. А сам же процесс можно визуализировать.

Как пишет издание, немецкий математик Фердинанд фон Линдеманн в 1882 году доказал, что решение квадратуры круга невозможно с помощью классических инструментов.

Спустя 43 года выдающийся польско-американский математик Альфред Тарский изменил правила задачи. Ее формулировка звучала так: можно ли разрезать круг на конечное число частей и собрать из них квадрат такой же площади? Или, формальнее, возможно ли разбить круг на конечное число подмножеств, которые попарно не пересекаются, и передвинуть их так, чтобы получить разбиение квадрата такой же площади на попарно непересекающиеся подмножества?

Читайте также: Ученые установили новый «рекорд» числа Пи с помощью суперкомпьютера

В 1990 году венгерский математик Миклош Лацкович утверждал, что это возможно. По его словам, для этого круг придется разделить более чем на 1050 частей. Однако математики назвали доказательство Лацковича "неконструктивным", поскольку он не визуализировал его.

Теперь же, в отличие от Лацковича, Мате, Пихурко и Ноэлю удалось показать решение квадратуры круга. Их решение содержит большое число фрагментов, но теоретически их можно изобразить.

При цитировании и использовании каких-либо материалов в Интернете открытые для поисковых систем гиперссылки не ниже первого абзаца на «ukrinform.ru» — обязательны, кроме того, цитирование переводов материалов иностранных СМИ возможно только при условии гиперссылки на сайт ukrinform.ru и на сайт иноземного СМИ. Цитирование и использование материалов в офлайн-медиа, мобильных приложениях, SmartTV возможно только с письменного разрешения "ukrinform.ua". Материалы с пометкой «Реклама», «PR», а также материалы в блоке «Релизы» публикуются на правах рекламы, ответственность за их содержание несет рекламодатель.

© 2015-2022 Укринформ. Все права соблюдены.

Дизайн сайта — Студия «Laconica»

Расширенный поискСпрятать расширенный поиск
За период:
-